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1. Introduction

In this paper, we will be concerned with location models and, in

particular, the one sample location model. We wish to make inferences

about 8, the center of symetry of a continuous, symmetric population

with c.d.f. F, based on a random sample of size n. Many authors have

considered this problem, although many place more restrictive assumptions

on F, such as normality. If these additional assumptions are questionable,

practitioners often seek procedures which remain valid when no specific

form for the underlying distribution is assumed. For testing hypotheses

about 8, the Wilcoxon and sign tests have emerged as two of the more popular

procedures. In addition, estimation procedures, both point and interval,

based on these rank statistics have been developed. However, the sign test,

while optimal if F is the double exponential c.d.f., is quite inefficient

at the normal model. Conversely, the Wilcoxon test, which is optimal if

F is the logistic c.d.f., is less efficient for heavier tailed distributions.

Also, the estimation techniques derived from the Wilcoxon statistic (Lehmann

(1975), Chapter 4, Section 3) are computationally difficult for moderate

or large samples (Johnson and Ryan (1978)).

Thus, we propose a class of rank statistics "between" the sign and

Wilcoxon statistics. The corresponding tests and estimation procedures

will retain much of the simplicity of those based on the sign statistic

but with improved efficiency (especially near the normal model). In addi-

tion, all the procedures have excellent robustness properties.

Ak
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2. Testing

Let X1  ... <., be the ordered values of a random sample from F.

Let 0 < a(l) < a(2) < ... < a(N) be a given set of scores. Then WN(0o) =

Za(i)Vi(6 ) is a linear signed rank statistic for testing Ho: 8 8 where

V (8 ) - 1 if Xd - 8 > 0 and 0 otherwise and IXd - o _ .• < 0X1d -6eo0.

In this case, i is the rank of IXd - 8oI among the absolute values, i - 1,

..., n. Notice that a(i) - i yields the Wilcoxon statistic and a(i) - 1

yields the sign statistic. Our approach is to select a set of scores

"between" the sign and Wilcoxon scores. Let

0 i= , ..., b1

1 1 f b 1 +i, ... b2

ak(i>= 2 i= b 2 +l, ... , 3  (2.1)

k i b bk + 1, .. ,N

where 0= Yo < Y1 < Y2<"' Yk _< k+l= 1, bt - [Nyt] t -0,..., k + 1

and [-] is the greatest integer function. Let TN,k(9) - Zak(')Vi(e). Then

TNk is called the k-step statistic.

Noether (1973) studied the 1-step statistic with particular emphasis

on interval estimation based on TN,I . Notice that if yl - 0, TN,1 is the

sign statistic. Policello and Hettmansperger (1976) discuss the 1-step

statistic with regard to adaptive methods of estimation of 8. Notice that

the freedom to vary *' "' Yk makes this a rich family of statistics and

hence some member of the family should be suitable for testing H over a

wide range of symmetric underlying distributions.

.... .....
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To test H0: e - 80 vs. Ha: e > o, we will reject H if TNk(o) > c.

However, we will consider only the case 8 - 0 since otherwise we can
0

subtract ° from each sample observation. Henceforth, we denote TN,k(O)

by TNk. Next, we consider the null distribution of TN,k.

Theorem 1. If e - 0, then TN, k - E iWi where Wi is distributed as binomial
i-i

with parameters bi+1 - bi and 1/2, and W 1 Wk are independent.

This result follows directly from Lemma 10.1.11 of Randles and Wolfe

(1979).

Corrollary. If B - 0, then
k k

E(TN'k) - i(bi+l - bi)/2, Var(TN k) i l i2 1 - bi)/4
i-i i-i

Notice that TN, 1 follows a binomial distribution with parameters N - b1

and 1/2 and that TN,2 is a weighted combination of two independent binomial

random variables. We conclude discussion of the null distribution of TN,k

with the following result on the asymptotic distribution of T

Theorem 2. Under H : e - 0, for k > 1 fixed, the limiting distribution

(as N + co) of (TN,k - E(TN,k))/(Var(TNk))I /2 is N(O, 1).

Proof. Theorem 1 exhibits TN,k as a linear combination of a fixed number

of independent binomial random variables. Since each of these converges

to a normal distribution, the result follows.

Example. Thirty observations were generated from a normal distribution

with 1 - 0, a - 4. The ordered data (rounded to two decimal places) follows.

-10.33 -2.83 0.01 2.30 4.28

-6.16 -1.36 0.05 2.38 4.30

-6.03 -1.30 0.31 2.97 4.92

-5.80 -0.93 1.25 3.47 6.19

-5.10 -0.53 1.81 3.67 6.32

-3.71 -0.52 2.24 4.08 7.96
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We will compute the 2-step statistic with steps at y1 .2, Y2 .6. The

reason for this choice will be apparent later in this section. Since N -

30, bI - [30(.2)] - 6, b2 - 18. Thus, TN,2 ignores the six observations

with smallest absolute value, counts the number of positive observations

with absolute values ranking from 7 to 18, and adds to this sum twice the

number of positive observations with absolute values ranking above 18.

Thus, TN, 2 - 8 + 2(7) - 22. For testing Ho: 8 - 0 vs. Ha: 6 > 0, we have,

correcting for continuity, Z - (TN,k - .5 - E(TN,2))/(VarTN,2)
1 /2 and so

Z - (22 - .5 - 18)/T5- - .90 or p - .1841.

The exact distribution of TN, k under Ha is quite complex and will not

be discussed. We mention only that Markowski (1980) has shown that the
exact distribution of TN,1 depends only on P(Xj + XJ+bl > 0) j 19

N - bl, but the form of the dependence is quite complex.

In order to discuss asymptotic properties of the inference procedures

studied, it is necessary to discuss some aspects of the asymptotic distri-

bution of TN,k under H a . First, Markowski (1980) has shown that TN,k is

asymptotically normally distributed under a sequence of contiguous location

alternatives. The proof involves a modification of a technique employed

by Albers, Bickel, and van Zwet (1976). Next, when the limit exists, define

the Pitman efficacy of a statistic RN by C(%) = lim -! E8 (%)j /(N Var 0
8-0

where the variance is computed under the null hypothesis and the mean is

computed under the alternative. Under regularity conditions, the asymptotic

performance of two test statistics can be compared by considering the ratio

of their squared efficacies. See Lehmann (1975, Appendix, Section 6) for

a complete discussion.

The efficacy of the k-step statistic can be computed directly from

the following.

.1 4
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Theorem 3. If F has finite Fisher's information, and the density, f, of

F is differentiable, then

C2 Tk - 4[f J+(2F(x) - 1) f'(x)dx]2
(TN,k 0 (2.2)

~1
f J+(u)du

0

where J+, the limiting scores function, is given by

o 0 <u< Y1

1 Y 1l < < Y2

J+(u, k) - (2.3)

k Yk<u<l

Proof. Begin with 10.2.11, p. 338 of Randles and Wolfe (1979) and apply

an integration by parts to yield the result.

Corollary. Under the conditions of Theorem 3, the squared efficacies of

the one and two step statistics are:

C2 (T) 4f2{F-l [(l + Y9)/21} (2.4)

and

C2(T2) [f{F-l [(1 + y1 )/21} + f{F-l[(1 + y2)/211
2

N,2 (2.5)I - Y2 + (Y2 - Y1)/4

Using (2.4), we determine in Table 1 that member of the class of one-

step statistics which maximizes the efficacy for the following underlying

distributions:

A1 : Normal, f[F 1 (x)] - (2r)1/2exp[(F-l(x))221},

A2 : Logistic, f[F- l(x)] - x(l - X),
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A3: Contaminated Normal, E - .05, a2 - 9, f(x) - (1 - c) (x) + -(x/)

where 4(.) is the standard normal density function,

A4 : Double Exponential, f(F-1(x) - x if 0 < x < .5 and I - x if .5 < x < 1.

- Table 1 about here -

Table 1 indicates that for the 1-step statistic, the optimal choice of

Yl decreases as the tails of the underlying model become heavier. Also, we

see that despite the simplicity of the 1-step statistics, the best 1-step

statistic is quite efficient compared to the optimal choice in the class of

possible statistics. In addition, we have included a comparison of the best

1-step statistic as well as the 1-step with yl - 1/3 as opposed to the sign

statistic. These latter two comparisons were first discussed by Noether

(1973) in a somewhat different setting. Notice that the statistic with

Yl - 1/3 seems to be an improvement over the sign statistic since its

efficacy is more stable and improves significantly over the sign statistic

at the normal model.

-Table 2 about here-

Table 2 illustrates the effect on C2 (TN 2 ) caused by changes in

and y2. In addition, the optimal choice of (Y1, Y2) is noted for each

underlying model. Notice that the efficacy changes only slightly near the

optimum value so that a choice of (y1, Y2) in a neighborhood of the optimal

value will still yield nearly highest efficiency. Of course, typically the

underlying distribution may not be known and so a test with good efficiency

over all distributions considered would be desirable. From Table 2, we see

that the choice y1 - .2, y2 - .6 has such properties. In Table 3, we compare

this 2-step statistic with the sign, Wilcoxon, and t statistics as well as

-. ....- 4t. I
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the likelihood ratio statistic for the particular underlying distribution.

We see that TN,2 improves upon the sign statistic while retaining much of

its simplicity. In addition, it compares quite favorably with the t-

statistic at the normal model (e - .89) while being superior to the t-statistic

at the other distributions considered. We see also that this 2-step statistic

has properties very similar to that of the Wilcoxon statistic.

- Table 3 about here -

Thus, if one step is used, we recommend y1 - 1/3 and if two steps are

used take y1 = .2, .2 6. These recommendations are based on the effi-

ciency calculations of Table 3. In the remainder of the paper, we will

investigate the estimation procedures associated with these tests and study

their robustness properties.
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3. Point Estimation

Hodges and Lehmann (1963) illustrate a method for deriving point

estimators from rank statistics such as TN,k. We denote by 8k(Y, Yk)

or simply by 6k the Hodges Lehmann estimator (H-L) of 6 derived from TN,k .

Bauer (1972) has shown that the linear rank statistics WN(e) - Ea(i)vi(e) as

defined in Section 2 are non-increasing step functions which can have steps

only at the Walsh averages, {(x i + x )/2 ; 1 < i < J < N}. The sign statistic

has steps only at {xi : 1 < i < NJ while the Wilcoxon has steps at each of

the Walsh averages. Following the method of Bauer (1972), we find that TN,k

has steps of size 1 at the averages in Dk = {(xi + x.)/2 : j - i = bt, t - 1,

.. k} and hence 6k med Dk. Now for t = 1, ... , k define Dk, t

{(xi + xbt+i)/2 :i = 1, ..., N - b t}, the Walsh averages corresponding to

the t'th step of TNk. Then Dk = U D and so k med (U Dk't)" The
Nkk t k~t t t

advantage of this representation is that the Walsh averages in Dk,t are

a priori ordered. This means that for small k, finding the median 6k may

not be difficult. For example,

(X +x /I2if N -b odd
2 (N - bI + 1)/2 (N + bI + 1)/2 1
2 -(3.1)

{X(N - bl)/2 + X(N + bl)/2 + X(N - b + 2)/2 +

X(N - b + 2)/21/4 if N - bI even.

Thus, 2 can be computed directly from the ordered sample. As another

example, we use the ordered structure of the sets D and D32 to exhibit

a simple algorithm for computing 43. Our approach is to begin with medians

of each of the sets D31 and D32 and then by a series of comparisons of

Walsh averages, determine 
^3

7Z MER--
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Let m - (xi + xj)/2 and B(a, b) - m a -ba b, b 2+b

a i, ..., N -b 1  b 1, ..., N -b 2

Algorithm

Case 1. N - b even, N -b 2 odd.

First consider B((N - b1)/2, (N - b2 + 1)/2) and suppose for now that

it is greater than 0. Notice that this implies m (Nb2)/2, (N+b2)/2 : e -<

m (N-b1)/2, (N+b1 )/2. Next, compute B((N - bl)/2, (N - b2 + 1)/2 + 1). If

B((N - bl)/2, (N - b2 + 1)/2 + 1) < 0, then e = m(N-b1)/2, (N+bl)/2. If

B((N - b1 )/2, (N - b2 + 1)/2 + 1) > 0, compute B((N - b1 )/2 - 1, (N - b2 + 1)/2

+ 1). If B((N - b1 )/2 - 1, (N - b 2 + 1)/2 + 1) > 0, compute

B((N - b1 )/2 - 2, (N - b2 + 1)/2 + 2). Continue until B((N - b1 )/2 - i,

(N - b2 + 1)/2 + i) > 0 and B((N - bl)/2 - (i + 1), (N - b2 + 1)/2 + (i + 1))

< 0. Then if B((N - b1 )/2 - i, (N - b2 + 1)/2 +(i + 1))< 0, e =

M (N-bl)/2-i, (N+b1)/2-i and if B((N - b1)/2 - i, (N - b2 + 1)/2 + (i + 1)

> 0, 0 = m(N-b2+l)/2+(i+l), (N+b2+1)/2+(i+l). Recall that we assumed

B((N - b1 )/2, (N - b2 + 1)/2) > 0. If not, then proceed in a completely

analogous fashion except increase the first component and decrease the second

until B((N - b1)/2 + i, (N - b2 + 1)/2 - i) > 0.

Case 2. N - b odd, N - b2 even.

Proceed as in Case 1 but begin with B((N - b1 + 1)/2, (N - b2 )/2).

Case 3. N - b odd, N - b2 odd.

Begin with B((N - b1 + 1)/2, (N - b 2 + 1)/2). Proceed as in Case 1 reaching

the point where (e.g.) B((N - b + 1)/2 + i, (N - b2 + 1)/2 - i) < 0 and

B((N - b1 + 1)/2 + (i + 1), (N + b2 + 1)/2 - (i + 1)) > 0. If
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B((N - b + 1)/2 + (i + 1), (N - b 2 + 1)/2 - i) > 0 (3.2)

B((N - b1 + 1)/2 + i, (N - b2 + 1)/2 - (i + 1) < 0, (3.3)

then 8 .= {m(N-b1+)/2+(i+l), (N~bl+l)/2+(i+l) + m(N-b2+1)/2_(i+l), (N+b2+1)/2-

(i+l)}/2. If the signs of the inequalities (3.2) and (3.3) are other than

those listed, then once again ; can be determined in an analogous fashion.

Case 4. N - b1 even, N - b2 even.

Begin with B((N - b1 )/2, (N - b2)/2) and proceed as in Case 1. Then make

comparisons as in (3.2) and (3.3). 6 is determined by the direction of

these inequalities. Notice that it may happen that the final stage cannot

be reached because the second component can no longer be increased (or

decreased). At this point, 8 can be computed immediately since in this

case:

1) e must come from the set D31.

2) The position of the largest element of D32 in the ordering of

D31 will have been determined by previous steps.

Next, we illustrate the use of the algorithm using the data of the

example in Section 2. We will compute 8(.2,.6) for this data. Now N - 30,

b bI = 6, b 2  18 and so N - b = 24, N - b2 = 12. Thus, we seek the 18th

and 19th largest elements of D . To find these we apply Case 4 of the

Algorithm. We begin with

B(12,6) -i2'8 _24 . 1.35 > 0.2 2

Next we compute

X l+Xl 7  "7+X25
B(11,7) - 2 2 - -0.17 < 0.

Thus, we have reached the stopping point and 6(.2,.6) can be determined

after two more comparisons.
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Now B(12,7) - .27 > 0, B(12,8) , -1.22 < 0, B(11,6) - .91 > 0. Hence, the

7th smallest element of D32 is between the 1 1 th and 12 th smallest in D31

and so it is 1 8th smallest in D . Similarly, the 12 th smallest element of

D31 is 19th smallest in D3. Thus

1 X7+X25 X12+X18e(.2,.6) - T 2 + 2 -. 79

Note that for this data i - .46, the sample median is .78, and the median

of the full set of Walsh averages is .705. The mean seems to have been greatly

influenced by the observation -10.33. If we remove this point, the sample

mean becomes .837, which is similar to the other estimators. Notice also

that 5 Walsh averages and 5 comparisons were needed in the computations.

This can be contrasted with the 465 Walsh averages which enter into compu-

tation of the median of the full set of Walsh averages, which is the estimator

based on the Wilcoxon statistic.

For k > 3, the same technique can be applied although the number of

ordered sets increases and as a result substantially more averages may be

needed before the estimator can be determined.

Next, we consider the efficiency of 6 . Let p1 and be two consistent

estimators of e. Suppose that N/2 - 0) has a N(0,a2 (Y) limiting

distribution. Then the asymptotic relative efficiency of P1 with respect

is ARp,p 2) 2 2 (p ). In addition, if pi is the H-L estimator

derived from a statistic RN, then a = -C(R)]- and hence the ARE of

two H-L estimators is the same as the Pitman efficiency of the corresponding

test statistics. See Randles and Wolfe (1979, p. 227). In particular,

since TN,k is asymptotically normal, Nl/2(gk _ 6) has N(O,[C
2 (T N,k)]-l as

its limiting distribution, where [C2 (TN,k)]-1 is given in (2.2).
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As a result, the efficiency comparisons of Table 1-3 continue to hold

when comparing the corresponding point estimators. In particular, using

-'3Table 3, we can compare 8 (.2,.6) with the sample mean, median, and the median

of the set of all Walsh averages. We see that 8 (.2,.6) compares favorably

with each of these estimators, and, in particular, its efficiency very closely

parallels that of the median of all Walsh averages. However, computation of

3 (.2,.6) requires only a small subset of all Walsh averages, as we have

^'3previously seen. Thus, 8 (.2,.6) is a viable alternative to the other esti-

mators if both simplicity and efficiency are considered.

Next, we propose an alternative estimator of 8 which further utilizes

the ordering of the elements of D31 and D3 2. The estimator suggested is a

linear combination of the medians of the sets D31 and D32 where the weights,

A, and I - A, are proportional to the number of elements in D and D31 32

respectively. Following this approach, we obtain

^, y (19,2) (X[(ly1)N/2 ] + X[(1+y1)N/2] )X/2 +

(3.4)

(X[(IY2)N12 ] + X[(I+2 )N/2 )(1 - X)/2

where X - proportion of elements in D which are in D Although 8* is not
3 31-

a H-L estimator based on any member of TN,2  we would expect it to have

similar propert,,,as. This is confirmed in Table 4 which compares e*(.2,.6)

(X[.4N] + X[.6N])/ 3 + (X[.2N] + X[.8N])/6 with 63(.2,.6) as well as with

other comuonly used estimators of 6. We see that very little efficiency loss
results from using 8* in place of 8, and some computational advantage is

gained. Again note the improved efficiency of this simple estimator at the
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normal distribution. Thus, in terms of simplicity and efficiency, both

e*(.2,.6) and 6(.2,.6) are viable alternatives to the classical estimators

considered in this study.

- Table 4 about here -

We conclude this section with a brief discussion of the favorable

robustness properties of e and e*. The influence curve of k can be

determined using the methods of Hettmansperger and Utts (1977) and that

of e* by following Huber (1977). In each case, we find that the influence

curve is a step function with a finite number of jumps so that it is bounded

but discontinuous. The boundedness is a desirable property since it indi-

cates that the estimator is not unduly influenced by any single observation,

regardless of its magnitude. The discontinuity of the influence indicates

instability in the estimator at the points of discontinuity. A similar

effect has been noted by Hampel (1974) for the Winsorized mean. This in-

stability in 8 is further illustrated for the case k - 3 by the following
result which gives a worst case comparison of 3 with X.

Theorem 4. Let Q be the class of symmetric, continuous, unimodal densities.

Then

inf ARE(6(yl,y2 ), X) = (I - y1 ) 3 1(3(l - y2) + (y2 - yl1 /4) (3.5)
f 6

We defer the proof until the appendix. Notice that when y1 .2 and Y2

.6, the infimum is .39. This is a slight improvement over the median vs.

the mean for which the infimum is .33. The infimum in the case of the

median of the Walsh averages vs. the mean is .864. In addition, it should

be noted that the least favorable distribution is one which exhibits maximum

instability at those points which are discontinuities of the influence curve.
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Another measure of robustness is the breakdown point (Huber 1981).

While the influence curve measures the effect of an additional observation

at y on the estimator, the breakdown point gives the fraction of gross

errors the estimator can tolerate before it becomes unbounded. Hampel

(1971) formulates a technical definition as well as some examples. The

breakdown point of *(y1, Y2) is (1 - Y2)/2. This follows from Huber (1981)

but is also intuitively clear since (1 - y2)/2 is the most extreme quantile

used to compute e*. Following Hettmansperger and Utts (1977), it can be

shown that the breakdown of 83 (y1, y2) is

b 3  (2 - Y1 )/2 3y2  > 71 + 2
2 - 1 - (Y1 + Y 2 )/4 3y2 < Y1 + 2

Notice that the breakdown of e*(.2,.6) is .2 while that of e(.2,.6) is .3.

We also note that the breakdowns of X, HL, and X are 0, .293, and .50,

respectively. Table 5 indicates how the breakdown of e(y1, Y2) varies with

71 and y2.

- Table 5 about here -
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4. Interval Estimation

Confidence intervals for 8 based on rank tests are described in Lehmann

(1963), Sen (1966), and Bauer (1972). Applying the methods of Bauer to the

statistics TN,k, we see that the endpoints, 8 and 0., of the confidence

interval must be elements of Dk. In particular, if P 60(TN,k <__ C) - a/2,

then a (1 - ct) 100% confidence interval for 8 has endpoints 6L, the (C + 1)'st

k neDk and 61, the (Nk - C)'th ordered element in Dk, where

Nk - kN - Z bi, the number of elements in Dk. Thus, the problem of computing
i-l

the endpoints of this interval is reduced to that of finding particular

Walsh averages within the restricted set Dk.

If k - 2, we have previously seen that the elements of D2 are ordered

and so we have L  (Xc+ + X C++bl)/2, and (X- + X_)/2 where

C can be determined using the fact that TN,2(0) \ Bin(N - bi, 1/2) or by a

normal approximation. This result was first obtained by Noether (1973).

If k - 3, we seek the (C + 1)'st and (2N - bI - b2 - C)'th ordered Walsh

averages in D The algorithm of Section 3 modified to start from selected
3.

quantiles of the sets D and D can be used to compute these endpoints.
31 32

We illustrate this with the data previously considered. We will calculate

an approximate 95.44% confidence interval for 8. Using the Corollary to

Theorem 1, a normal approximation with continuity correction yields

-1 1/2C " (/2)((b 2 - bl)/4 + N - b2 ) + (b2 - b)/2 +

(4.1)
N- b2 - 1/2.

Now letting yl .2, Y2 - .6 and recalling that N -30, we obtain C -"10.
Thus, 6L is the ll'th smallest element in D and 8U is the 26'th smallest

No l 2., -
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element in D3  To compute eL, notice that the number of Walsh averages in

D31 is 12. As a result, we first consider B(7,4)(since 11(24)/36 A 7 and

11(12)/36 " 4). In applying this method, care is needed to assure that the

starting point be of the form B(a,b) with a + b - d if the d'th smallest

element is desired. Now, B(7,4) < 0 so we check B(8,3) > 0. Furthermore,

B(8,4) > 0 and B(7,3) > 0. Thus, the 7'th element of D31 is 11'th smallest,

i.e. 8 L a (X7 + X1 3 )/2 - -1.41. By a similar argument starting with B(17,9)

we find B(17,9) > 0, B(16,10) < 0, B(17,10) > 0, and B(16,9) > 0. Thus,

OU M (- 6 + X2 2)/2 - 2.36. Notice that only 8 Walsh averages were required

in this case, whereas there are a total of 465 Walsh averages for this

sample. The approximate 95.44Z confidence interval based on the Wilcoxon

statistic which requires ordering of these 465 Walsh averages is (-1.04,

2.30) for this data.

Lehmann (1963) has considered two definitions of the asymptotic relative

efficiency of two interval estimation procedures; one in terms of the

probability of covering a false value, the other in terms of the asymptotic

behavior of the lengths. Randles and Wolfe (1979) denote these by ARE and

L-ARE, respectively. Lehmann has shown that in many regular cases, including

all those considered in this work, the two definitions yield the same effi-

ciencies. Furthermore, the efficiencies of confidence intervals derived

from test statistics using the method of Lehmann is just the ratio of squared

efficacies. Hence, we see that the favorable efficiencies of TN'k and k

.k ̂ k
also apply to the interval (eL,eU). In particular, if y1 - .2, y .6,

the interval (eL 3 ,U ) has efficiency similar to the interval derived from

the Wilcoxon statistic, yet requires computation of only a very small number

of Walsh averages.
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Next, we consider another confidence interval for 6 obtained by deter-

mining two separate intervals, one from D31 and the other from D32, and then

combining the endpoints of these intervals. Suppose that the desired con-

fidence coefficient is I - cx. Then an approximate (1 - a) 100% confidence

interval for 6 based on the elements of D31 will be (WcI +1 WNb -C 1) where

W < W < "'" < WN 1 are the ordered elements of D31 and using a normal

approximation C1  @-1(a/2) (N - b1)1/2 /2 + (N - bI -1) /2. Similarly,

an approximate (1 a ) 100% confidence interval for 6 based on the elements

of D 32 is (Z +, ZN-b2_C2 ) where ZI < ... < ZN-b2 are the ordered elements
-l(/2 (N - 12 //2 2

of D3 2 and C2  ' D-1 2) /2+ (N- b2 - 1)/2. Now let

6 L X W2C+I + (i X) zC2+1

(4.2)

eU A WN-C2-bI  2

where 0 < A < 1. Then we propose (0L*' eU*) as a confidence interval for 6.

Theorem 5. (; L 6U*) is asymptotically a (1 - a) 100% confidence interval

for e; ie, lim P(;L < 6 < U = 1- a.
N-Ko

Proof: As N tends to infinity, we have P(6 < WCI+I), P(@ < ZC +I,
c2 l

P('> WN-b _C1) and P(e > ZNb 2-C2  each tending to a/2. But

min {Wc1+1, ZC2+ 1 } < eL max {WcI+1, Zc2+1 } and

min {WNbC, bC 2 }<8 < max{W - N-b2-C
S1 - I-C 22 - 2  2

i^ 
t1Combining these results implies that P(6 6 8L )tends to /2 and P(6 > U )
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tends to a/2 which proves the theorem.

Next, we investigate the efficiency of this interval with

A - (1 - y1 ) / (2 - y"1 - Y2
), so that the weights are proportional to the

number of elements in the sets D31 and D 32 Notice that, in this case,

eL  X (XCI+I + X C1+b ) / 2 + (1 - X) (Xc2+1 + Xc2+b2+1)/2

(4.3)

eU  (XND 1 _C1 + XNC) / 2 + (1 - X) (XNb2_C 2 + XNC) / 2

Thus, (6 - 8L  is just a linear combination of the lengths of the con-

fidence intervals based on D31 and D32 , respectively. As a result, we can

use earlier results on efficiencies to compute the efficiency of the interval

(eL %U*). In particular, it can be shown that

1/2  e e8 L 2 X(N 1 2 (4[NI/ I +- (4.4)

2 (D (y/2) CCTNl(Yl) + C(TNl(y2)

in probability.

Using (4.4), Table 6 compares this interval with other commonly used confidence

intervals for e as well as with (eL' U) with y1 = .2, Y .6. We see that

considerable efficiency is lost for both the logistic and double exponential
A* A, A A

distributions when (6eL eu ) replaces (6L, Ou). This is in contrast to

the estimation case where the efficiency of 8 closely paralleled that of

e. Thus, we see that in the case of interval estimation, a somewhat higher

price in terms of efficiency must be paid to get the additional simplicity

of (;L ' U over (6L' 6U) . Once again, however, both of these methods
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perform quite well at the normal model, and can be superior to the interval

based on the sample mean for non-normal models.

- Table 6 about here -

ili
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5. Extensions and Conclusions

First, we briefly summarize, without proofs, the extensions of the

previous results to the two-sample location problem. In particular, we

point out that the scores function as a step function produces a two-sample

rank statistic and corresponding point and interval estimators with the

same asymptotic relative efficiencies as those considered in the one-sample

problem. For a complete discussion, see Markowski (1980).

Let X1 < ... < Xm and Y1 < ... < Yn be the ordered values of random

samples from distributions with distribution functions F(x) and F(y - 6),

respectively. Suppose without loss of generality m < n.

k i - 0, ..., [(l-Y k ) N/2]

Lc(i) = (5.1)Let k )
0 i - [(l-yl) N/2] + 1, ... , [(l+y 1 ) N/2]

k i - [(l+-k ) N/2] + 1, .... N

where 0 < y1 
< Y2 < ... < Yk< 1; k < N = m + n, k fixed.

n
Consider SN,k (6 ) Z ck (Ri(6)) where Ri(6) is the rank of Yi - 6 among

i-l1

X1, " 4m YK, - ...' Yn -
6 . Now with y0 = 0 and y - 1 let

k+l

St = [( + Y ) N/2], gt = [(i- 7 ) N/2] t = 0, ... , k + 1. (5.2)

k
Theorem 6. If 6 - 0, then SN, k( 0 ) - Z i W where

i=-k

(gN - gi-1 iN- (gi- gi- ) )  N
P(Wi t)- t n-t for t - 0, 1,

min {n, gi - gi-i } " In addition, E(SN, k (0) - 0, Var (SN, k(O))
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2 i2 (gi+l - gi) / N(N - 1), and for k fixed, the limiting distribu-
i-I 1/2

tion (as N - -) of SN, k(0) / (Var SN, k(0)) is N(0, 1).

Next, we consider the H-L estimator derived from SN, k(6), which will

be denoted by 6k'

Theorem 7. Let gt be as in (5.2), and Lk - {Y. - Xi  + j - gt + 1,

t - + 1, ... + k}. Then k med Lk. In particular,

1 med L1 = med (PI U P_ 1

(5.3)

62 m red L2 med {P1 U P-1 U P-2 U P 2 }

where Pt {Yj - Xi - i + j - gt + 1}.

Notice that the elements within any set Pt are automatically ordered and so

computation of 61 required the same steps as computation of 62 for which

an algorithm was previously given. Computation of 62 requires the detem-mina-

tion of the median of the union of four ordered sets. The algorithm considered

here can be extended in a straightforward way to allow simple computation of

62.

In the same way, it can be shown that a (1 - a) 100% confidence interval

for 6 has the form (6L, U where 6L (C + 1) 'st smallest element in

U (Nk - C) 'th smallest element in Lk (5.4)

Nk - the number of elements in Lk and C satisfies P(SN k(0) < C) = a/2.
6=0 Nk

Thus, we see that computation of this interval requires the same type of

algorithm as is needed to compute the estimator. Also, approximate confidence

intervals can be obtained using the normal approximation given in Theorem 6.

In addition, all the efficiency comparisons in the one-sample case remain
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valid when comparing these inference methods with other two-sample methods.

Also, the simplicity of the methods remains in the two-sample problem. Thus,

once again we have proposed a class of inference methods which are desirable

if efficiency, simplicity, and robustness are considered.

Lastly, the scores function considered can be adapted to the problem

of making inferences about the slope parameter in a simple linear regression

model when the form of the error distribution is unspecified. Once again,

the resulting inference procedures will retain the efficiencies of those which

we have discussed.
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APPENDIX

Lemma 1. Let 0 be the class of symmetric, unimodal densities, then

^ 1 2(A)

inf e(6(yl), x) = 2_ . (A.1)

Proof:

^ _ 4f2 [F- ( - -- )1 2  (A. 2)

e(6(y I ),X) ly( .f

We assume WLOG that f(O) = 1. We wish to find f E PI which minimizes

-1 l+y 1  2
f[F ( 2 a for fixed y1  Let2[-l ) f *

1 0 < x < y 1 /2

f (x) = (A.3)
fc~x

I-Y,

2c Y1 /2 < x < c + Yl/2

and fc(-X) = c (x).

Then it is easily verified that f is a density function and it is clear

that f may be approximated arbitrarily closely by a density fl in 2.1
-l1+Yl -YI Yl -Yl 2 +
__1 _ 1 - 1  2 2 13 l- 1 2

Furthermore, f c[Fc (- 2 )] --- and af =3(-) +
c

* 2Yl(l-Yl) y1 (l-y1)

2 4



Now for fF)] fixed, is minimized for unimodal densities byNo2 or[-( )]fed f

choosing f to be uniform for x > y1/2. Hence, the density fc will be

made least favorable by letting c - -. In this case,

e ( (Y1-71 2 (2
e~(1) 4 ( )22

1vTJA 1-Y1  2c f

and letting c we have

^ l-Yl 4 l-Yl 2  2
inf e(e~yl,X) = 1 ( )(---) - ( C-Y 1 )2

Finally, we note that f c F but since it can be approximated arbitrarily

closely by f1 e Fu, the result remains valid.

'Yl
Notice that the least favorable density is 1 until the point T-and

then becomes arbitrarily small and uniform in the tails. We now turn

to the result comparing e(yi,y 2) and X. First, we need a preliminary

lemma.

Lemma 2.

lim ef (M(y1 ,y2),X) < ef(e(y 1 Y2 ) ,X)
c-KO  c

for any f e Fu where fc is given by A.3.

Proof: Again take f(O) = 1. It is clear from the proof of Le-na I

that the least favorable density must be of the form:



1 0< x < Y /2

g(x) a Yl/2 < x < Y2/2

b Y2/2 < x < Y2 /2 + d

where b < a < 1 and d > 0.

But by the previous lemma, for fixed a, e(e(Y1 ,y 2 ),X) is minimized by

letting b - 0. Furthermore, for any fixed a and b, we may decrease the

efficiency by choosing a' < a and letting b * 0. Thus, the least favorable

choice for g makes a arbitrarily small and b = 0. But this is just the

density fc with c becoming arbitrarily large, proving the result.

Proof of Theorem 4.

By Lemma 2, inf e(e(y1 ,y2 ),X) = lim ef (e(yIY 2),X)
f e&c-X c

l-YI ,-yI) 2 2

-lim 2c 2c f

l-Y 2 + 1 _Y- 
c

(l-Yl)2 (1-Y1 )  (l-yl)3

1 3 31 !(Y
l-y 2 + -4 (Y2 -Yl) 3(-Y 2 + 2-y)



Table 1 Maximum Efficacy of TN, 1

Kurtosis C2 e(TNl, LRT)

A1  3 .81 .46 .81

A 2  4.2 .296 1/3 .89

A 3  7.65 .74 .38 .84

A 4  6 1 0 1

C 2*is maximu squared efficacy of TN 1

y1*is value of Y vhich maximizes C

eTN, 1, LTisefceyofTN, 1 with y- to likelihood ratio

test (LRT)



IT

2. Efficacy of TN, 2 as a function of YI' Y2  and F

Y1  Y2 A1  A2  A4

0 0 .637 .250 .595 1

.1 .2 .742 .288 .692 .876

.1 .4 .819 .310 .757 .833

.1 .6 .870 .316 .795 .805

.1 .8 .870 .304 .780 .807

.2 .4 .829 .312 .765 .865

.2 .6 .888 .320 .808 .720

.2 .8 .902 .311 .807 .714

.4 .6 .876 .304 .789 .556

.4 .8 .912 .300 .803 .533

.4 .9 .903 .295 .764 .544

.5 .7 .866 .283 .775 .457

.5 .8 .884 .280 .774 .445

.5 .9 .885 .276 .746 .450

.6 .8 .830 .250 .713 .360

.6 .9 .839 .246 .688 .357

.7 .9 .754 .204 .604 .267

.8 .9 .620 .151 .467 .180

denotes optimal choice of ('Y, Y2).



3. Efficiency of TN, 2 with Y, .2, Y2 -. 6

AA2 A 3A 4

e(TN ,2, S) 1.40 1.28 1.32 .72

e (TN, 2, W) .930 .96 .99 .96

e(TN, 2, t) .890 1.05 1.13 1.44

(N, 2, T*N, 2) .976 1 1 .72

e (%T LRT) .890 .961 .960 .72

S -sign test, W -Wilcoxon, t -t-test, TN, 2 -optimal choice of NO1 Y2)



Table 4

ARE of 8 (.2, .6) with respect to other estimators of e.

A 1  A 2  A3 A4

ARE(e* X) .87 1.04 1.12 1.44

ARE(6", HL) .91 .96 .98 .96

ARE(6 , X) 1.37 1.28 1.30 .72
^* A

ARE(e , e(.2, .6)) .98 .99 .99 1.00

Note: X - sample mean, IL - median of Walsh averages, X - saple median

* S-* -I



5. Breakdown of e(yI, y2)

Y1  0 .1 .1 .1 .1 .2 .2 .2 .4 .4

Y2 0 .2 .4 .6 .8 .4 .6 .8 .6 .8

C .500 .425 .375 .325 .350 .350 .300 .300 .250 .200

y1  .4 .5 .5 .5 .6 .6 .7 .8

Y2  .9 .7 .8 .9 .8 .9 .9 .9

* .250 .200 .175 .200 .150 .150 .100 .075

r • --1



6. ARE of (6eL e6 u relative to other interval estimators of 8,

(y1  .2, -y2 -6)

AA 2A 3A4

ARE~i, 2) .87 .91 1.10 1.24

ARE(l, 3) 1.37 1.11 1.28 .62

AREUi, 4) .91 .84 .96 .83

AREUi, 5) .98 .87 .97 .86

1 - (6 L*C.2, .6), a u*(.2, .6))q 2 -t-interval, 3 -sign test interval

4 - Wilcoxon test interval, 5 (e L (.2 , .6)9 6 u (.2, .6))
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